Search results for " Cardiac"
showing 10 items of 523 documents
Cardiac troponin elevation in patients with influenza virus infections
2021
The association between acute infections and cardiac injury, including myocarditis and acute myocardial infarction, is now well established. We have performed a systematic literature review for analyzing the results of epidemiological studies that measured cardiac troponins (cTn) in patients with Influenza virus infections. Overall, 14 articles were finally identified and analyzed. Taken together, the results of the scientific literature suggest that cTn elevation is a relatively rare phenomenon in patients with Influenza virus infection, with frequency generally comprised between 0 and 33%, more likely in elderly patients with significant comorbidities. In patients with modest cTn elevatio…
Cardiac Nonmyocyte Cell Functions and Crosstalks in Response to Cardiotoxic Drugs
2017
The discovery of the molecular mechanisms involved in the cardiac responses to anticancer drugs represents the current goal of cardio-oncology research. The oxidative stress has a pivotal role in cardiotoxic responses, affecting the function of all types of cardiac cells, and their functional crosstalks. Generally, cardiomyocytes are the main target of research studies on cardiotoxicity, but recently the contribution of the other nonmyocyte cardiac cells is becoming of growing interest. This review deals with the role of oxidative stress, induced by anticancer drugs, in cardiac nonmyocyte cells (fibroblasts, vascular cells, and immune cells). The alterations of functional interplays among t…
“Pro-youthful” factors in the “labyrinth” of cardiac rejuvenation
2016
IF 3.350; International audience; The mechanisms of aging and senescence include various endogenous and exogenous factors. Among cardiovascular diseases, heart failure is a typical age-related disease. New strategies to restore cardiomyocyte cells have been reported: endogenous substances that can regenerate the heart's cardiomyocytes have been described: follistatin like 1 (FSTL1), growth-differentiation factor 11 (GDF11) and insulin-like growth factor 1 (IGF-I). Manipulation of the different anti and pro-pathways is essential to discover new approaches to regenerative therapies. (C) 2016 Elsevier Inc. All rights reserved.
PPAR gamma agonist leriglitazone improves frataxin-loss impairments in cellular and animal models of Friedreich Ataxia
2020
Friedreich ataxia (FRDA), the most common autosomal recessive ataxia, is characterized by degeneration of the large sensory neurons and spinocerebellar tracts, cardiomyopathy, and increased incidence in diabetes. The underlying pathophysiological mechanism of FRDA, driven by a significantly decreased expression of frataxin (FXN), involves increased oxidative stress, reduced activity of enzymes containing iron‑sulfur clus-ters (ISC), defective energy production, calcium dyshomeostasis, and impaired mitochondrial biogenesis, leading to mitochondrial dysfunction. The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcriptional factor playing a key role in mito…
Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models.
2017
[EN] Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost opti…
Circulating exosomes deliver free fatty acids from the bloodstream to cardiac cells: Possible role of CD36
2019
Regulation of circulating free fatty acid (FFA) levels and delivery is crucial to maintain tissue homeostasis. Exosomes are nanomembranous vesicles that are released from diverse cell types and mediate intercellular communication by delivering bioactive molecules. Here, we sought to investigate the uptake of FFAs by circulating exosomes, the delivery of FFA-loaded exosomes to cardiac cells and the possible role of the FFA transporter CD36 in these processes. Circulating exosomes were purified from the serum of healthy donors after an overnight fast (F) or 20 minutes after a high caloric breakfast (postprandial, PP). Western blotting, Immunogold Electron Microscopy and FACS analysis of circu…
Cardiomyocyte proliferation prevents failure in pressure overload but not volume overload
2017
Induction of the cell cycle is emerging as an intervention to treat heart failure. Here, we tested the hypothesis that enhanced cardiomyocyte renewal in transgenic mice expressing cyclin D2 would be beneficial during hemodynamic overload. We induced pressure overload by transthoracic aortic constriction (TAC) or volume overload by aortocaval shunt in cyclin D2-expressing and WT mice. Although cyclin D2 expression dramatically improved survival following TAC, it did not confer a survival advantage to mice following aortocaval shunt. Cardiac function decreased following TAC in WT mice, but was preserved in cyclin D2-expressing mice. On the other hand, cardiac structure and function were compr…
Quantitatively characterizing drug-induced arrhythmic contractile motions of human stem cell-derived cardiomyocytes.
2018
Quantification of abnormal contractile motions of cardiac tissue has been a noteworthy challenge and significant limitation in assessing and classifying the drug-induced arrhythmias (i.e. Torsades de pointes). To overcome these challenges, researchers have taken advantage of computational image processing tools to measure contractile motion from cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs). However, the amplitude and frequency analysis of contractile motion waveforms doesn't produce sufficient information to objectively classify the degree of variations between two or more sets of cardiac contractile motions. In this paper, we generated contractile motion dat…
The Amino-Terminal Domain of GRK5 Inhibits Cardiac Hypertrophy through the Regulation of Calcium-Calmodulin Dependent Transcription Factors.
2018
We have recently demonstrated that the amino-terminal domain of G protein coupled receptor kinase (GRK) type 5, (GRK5-NT) inhibits NFκB activity in cardiac cells leading to a significant amelioration of LVH. Since GRK5-NT is known to bind calmodulin, this study aimed to evaluate the functional role of GRK5-NT in the regulation of calcium-calmodulin-dependent transcription factors. We found that the overexpression of GRK5-NT in cardiomyoblasts significantly reduced the activation and the nuclear translocation of NFAT and its cofactor GATA-4 in response to phenylephrine (PE). These results were confirmed in vivo in spontaneously hypertensive rats (SHR), in which intramyocardial adenovirus-med…
Cardiac regenerative capacity is age- and disease-dependent in childhood heart disease
2018
Objective We sought to define the intrinsic stem cell capacity in pediatric heart lesions, and the effects of diagnosis and of age, in order to inform evidence-based use of potential autologous stem cell sources for regenerative medicine therapy. Methods Ventricular explants derived from patients with hypoplastic left heart syndrome (HLHS), tetralogy of Fallot (TF), dilated cardiomyopathy (DCM) and ventricular septal defect (VSD) were analyzed following standard in vitro culture conditions, which yielded cardiospheres (C-spheres), indicative of endogenous stem cell capacity. C-sphere counts generated per 5 mm3 tissue explant and the presence of cardiac progenitor cells were correlated to pa…